
OPENING OF A CUT IN AN ELASTIC PLANE UNDER THE ACTION 

OF A MOVING LOAD 

I. V. Simonov UDC 539.3 

The problem of the steady motion of ~ slit of finite length along a cut in an elastic 
plane (the range of velocities is subsonic) is discussed. It reduces to the generalized 
Hilbert problem, whose solution has a different set of characteristics in the sub- and 
super-Rayleigh regimes of motion. The size of the separation region and the position of the 
slit relative to the load are unknown in advance and are determined in the course of the 
solution from additional physical conditions. First of all this produces the nonlinear 
nature of the problem, and secondly it significantly distinguishes this discussion from the 
Ioffe problem [i] from crack theory, which it resembles in its formulation. The solution 
for a crack of finite length is given for comparison. 

i. A uniform compressive stress -- o~ (~ > O) and a dynamic load --~(xl, t), which is 
applied symmetrically along the normal to the edges of the cut and is stationary in the 
moving coordinate system x = xl -- ct, y = x2 (t is the time), and which causes opening of 
the cut on the section L = {IxI < d} (Fig. i), act in an elastic plane with a cut along the 
x~ axis. Attention is devoted below to a justification of the selected scheme of steady 
motion of a simply connected and thin slit in a cut material (within the framework of linear 
elasticity theory) and the constraints on the class of permissible loads associated with this 
problem. We shall postulate for the present that o(x) is a nonnegative finite function of 
the Holder class [2] with the carrier Lo = {6~ < x < 62} ~ L. 

By virtue of the symmetry principle we shall discuss the problem only in the upper half 
plane. We shall seek a steady field of perturbed velocities ui(x , y) and a field of perturbed 
stresses oi~(x , y) (i, j = i, 2) in the region D = {!x] < =, y > 0} and also the numerical 
parameters ~ and ~ not known in advance, which specify the length of the opening and the 
location of the load relative to the selected coordinate system under the following condi- 
tions on the boundary y = O: 

~ = 0  (Ix]<~),  u~=O 

(x ~ L, = {1~! > d}), ( 1 . 1 )  

%~ = q ~  - -  ~(x)  (x ~ Lo) , 

~2~ = ~ ( x ~  L - - L 0 )  ; 

o -~<~0 ( x ~ L ~ ) ,  0"22 ~ 0~22 

/(x)>~O ( x ~ L ) ,  

d 

! (x) = - i~ ~ u~ (x', O) dx' (x ~ L), / (d) = / ( -  d) = O. 
x 

(1.2) 

At infinity we require the regular disappearance of the stresses 

~U < const / tx l  (JxJ - ~  ~ ,  i, ] = t ,  2), 

and at the singular points behavior of the functions such that 

O ~  wk < oo (k = t ,  2) ,  

(i.3) 

(1.4) 
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Fig. I 

where the power liberated at the points x~ = (--d, 0) and x~ = (d, 0), respectively, is 
denoted by w k. 

Conditions (1.2)-(1.4) are supplementary physical requirements to (i.i) which serve to 
isolate a unique solution. Inequalities (1.2) express, respectively, the condition of join- 
ing of the cut edges outside the slit (o~a is the total stress) and the nonintersection of 
the cut edges in the opening zone (y = f(x) is the vertical shift of the upper edge). The 
energy requirements (1.4) mathematically limit the possible singularities of the solution 
at the replacement points of the boundary conditions and in addition permit the mechanical 
energy to disappear but not to emerge at these points. ~ The latter is equivalent to the 
absence of concentrated forces at the singular points which produce positive work. The 
requirement of the energy flow be nonnegative plays an important role in the proof of the 
uniqueness theorem [3], and the example of [4] shows how nonuniqueness can arise otherwise. 

In the time-independent problem of dynamic elasticity theory (two-dimensional strain) 
one can introduce the following representations of the desired functions in terms of two 
functions of a complex variable which coincide with the representations of [5] to within 
the accuracy of a factor: 

(~2~ := R-~Re{[~[~2Iz~(z~) - -  Xl(z-.)] - -  [~;~e(zl) -~ [ ~ Z 2 ( z 2 ) } ,  ( 1 . 5 )  
c 

Ul =~" "2~),t~'R ~ e  {~2);1 (Zl) - -  ~ 2 X l  (Z2) - -  ~Z2 (Z1) - -  [~1[~2Z2 (Z2)}' 

C 

w h e r e  R = R ( c )  = $xB2 - -  B 2 i s  a f u n c t i o n  w h i c h  i s  p r o p o r t i o n a l  t o  t h e  R a y l e i g h  f u n c t i o n  ( c  R 
i s  a u n i q u e  p o s i t i v e  r o o t  o f  R ( c )  = 0 ) ,  ~ j  = r  - z~ = x = i B j y  ( j  = 1 ,  2 ) ,  cx a n d  c2 
are the velocities of expansion and shear waves, respectively, ~ is the shear modulus, B = 
i/2(1 + B2,), and a = i + B~ -- B. 

We shall give for reference the equations which relate the second derivatives of or- 
dinary complex expansion and shear waves (complex potentials of the displacements) cj(zj) 
with the functions Xj: 

2pRcl)[ (Zl) = - -  [ ~  (zt) -I- ~,X~(z,), 2pRcl)~ (z2) == - -  i~z  ~ (z~) + i~ ,Z . ( z , ) .  

0n the cut z, = z~ = x the expressions 

~12(x, O) =- [m{Zl(X)} , g,z2(x, O) = Re{z~(x)} ( 1 . 6 )  

follow from (1.5), 

The substitution of (1.6) into (I.i) with (1.3) and (1.5) taken into account lead to 
the Hilbert boundary-value problem: to find two analytic functions X1(Z) and X2(Z) of the 
complex variable in the upper half-plane which satisfy the conditions 

Im~fi =: 0 ( [ x [ <  o0), Irnx~ = 0 ( x ~  La) , ( 1 . 7 )  

Re  ~.. = o ~  (x ~ L - -  L0), Re  7..-. = ~ - -  a(x)  (x ~ Lo) , 
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on the real axis and the limits (j = i, 2) 

const const 
{ X j ( z ) l <  iz~dl~/~ (z--)---t-dq-Oi), I~J(z)l<'-]-i-?- (Izl --,- oo) ( 1 . 8 )  

at the singular points and at infinity. 

In addition the functions Xj(Z) should be such that the stresses and velocities calcu- 
lated in terms of them by means of (1.5) and (1.6) do not contradict the inequalities (1.2). 

2. We shall construct a unique solution of the Hilbert problem with the discontinuous 
coefficients (1.7) and (1.8) (we shall assume the parameters d and 6x to be unknown for the 
present) by the method of [2]. In the sub-Rayleigh regime of motion of the load (c < c R) 
the requirements (1.2) and (1.4) dictate the absence of singularities at the points z = • 
In the opposite case unbounded tensile stresses would appear to the right of the slit as in 
crack theory (if one assumes a singularity at the point z = d and satisfies the requirement 
f(x)~ 0) or the energy flow wx would be negative (a singularity at the point z = --d). 

One can make use for the determination of the sign of w k of the expression of this 
quantity in terms of the coefficients of the stress intensity, the velocity c (with the di- 
rection of opening of the cut taken into account), and the constant parameters of the medium, 
which are given, for example, in [6], from which it follows that sgn w k = (-- i) k sgn R (k = 
i, 2). 

One can write the general solution of the problem (1.7) and (1.8) in the form 

= o, = 7  l t-----; (d2 
6 2 - -d  

and due  t o  wha t  h a s  b e e n  s a i d  a b o v e  we s e t  t h e  c o n s t a n t  B e q u a l  t o  z e r o .  The c u t  j o i n s  t h e  
b r a n c h  p o i n t s  z = :id on t h e  r e a l  a x i s  t o  make t h e  r a d i c a l  u n i f o r m ;  t h e  r a d i c a l  t a k e s  p o s i -  
t i v e  v a l u e s  on t h e  u p p e r  edge  of  t h e  c u t .  

The s e c o n d  i n t e g r a l  i n  t h e  e x p r e s s i o n  f o r  Xf(Z)  r e d u c e s  to  t h e  i n t e g r a l  [7] 

1 i [ dt t __ sgn x 

j V i  __ tf (t__ z) =-- ]/~ / ~  (2.1) 
--I -- lz:x~L1 

therefore the solution takes the simpler form 

81 

%2 (Z) = 0, %2 (Z) = ~ k d2 __ t~ ] --- (Z ~ D). ( 2 . 2 )  
62 

The n a r r o w i n g  of  ( 2 . 2 )  t o  t h e  r e a l  a x i s  w i t h  t h e  a p p l i c a t i o n  of  t h e  S o k h o t s - - P l e m e l '  
f o r m u l a s  [2] l e a d s  to  t h e  e x p r e s s i o n s  

x,  (x) = o, z2 (x) = 
Ja~- -a (x )+ig (x )  ( x ~ g ,  o(x)~_O for x ~ L - - g 0 )  , 
[ o= q- g (x) sgn x (x ~ LJ ,  

8,7 

t i[ d2--x~ 1;20(t) dt 
g (x )=  .-f. d ~_ t  - - - ~  t - - z  ( x ~ L  < LJ. 

61 

(2.3) 

Here and below the integrals are understood in the sense of the principal value if they 
do not exist in the Riemannian sense. 

The substitution of (2.2) and (2.3) into formulas (1.5) will give the solution of the 
posed problem in D and on Lx + L only a~ter the unknown quantities d and 61 are determined 
(the coordinate 6= will then become known, since the size of the loading zone, which is 
equal to 62 -- ~x, is naturally specified). In addition one should verify the conditions 
(1.2). With these goals as well as with the goal of studying the singularities of the solu- 
tion we shall write out the formulas for the total stress o~2(x, 0) outside the slit, the 
velocities u2(x, 0), and the opening quantities f(x) obtained with the use of (I.I), (1.5), 
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and (2.3) and represent the asymptotic behavior of these functions in one-sided neighborhoods 
of the singular point x = d (similar behavior will occur when x + --d): 

t 

~% -- g (x) sg,~ ~ < 0 (x -~ L1), ~o . . . .  C V x - ~ -  d + 0 ((x--d)~D 

(x-+d+ 0), 
u2 :: .... cbg(x) : :  - -c (d / /dx)  (x ~- L),  u2 =-- cbC p f  t~--x -~ O((d - -  x)~/') 

(x -')" d -- 0), 
d 

f / (x) = b. g (t) dr, / (x) ..- 7 cbC (d - -  x) ~.~ (x--~ d - -  0), 

51 

C == ~ / '~  f* a (t) dt [~ (t - -  ~) (b > 0 for 0 < c < ca). 
:"t " . ( d  - -  t) 3 2 (d  -~- t) 1.'2 > O,  b := 2~t/~ 

(2.4) 

Formulas (2.4) show that the stresses and velocities are continuous at the points x1,2. 
A boundary condition is used in (2.4~ which follows from the continuity of the shifts f(+d) = 
0; another similar boundary condition f(-- d) = 0 generates a single equation for finding the 
constants d and 61: 

d 

J" g ( t ) d t - - O .  
--d 

(2.5) 

We obtain another equation by satisfying the condition of disappearance at infinity. 
It follows from (2.2) that 

and it must be that 

~.~(z) = ~ - 6'~ + O ( 1 / z )  (I~I ~ o~) 
( 2 . 6 )  

6 2 

. I [ ~ (x) dx  

61 
(2.7) 

The solutions of the nonlinear Eqs. (2.5) and (2.7) should satisfy the adopted condi- 
tions 61, 62~L, which imposes constraints on the permissible functions o(x). 

Below for illustration we shall consider a particular form of a load which has a point 
of symmetry on the x axis. Then it is natural to seek a solution which is symmetric with 
respect to the y axis (61 = --6=). Equation (2.5) is automatically satisfied, since g(x) 
becomes an antisymmetric function, and Eq. (2.6) has a unique root d > ~2 upon the satisfac- 
tion of the following constraint on o(x) and 62: 

~2 

t ~ a (x) dx 

J , ~'--=~-" > ~ ,  --62 {6, ,--  :r2) 1 ~ 

which is simultaneously a condition for the applicability of the scheme under discussion in 
the case of symmetric loads. 

We note that for such loads one should replace O(i/z) in (2.6) by O(i/z2). This is 
related to the fact that the moment of the forces applied to the elastic half-plane vanishes 

[2]. 

For a rectangular load (o(x)) = Oo const > o~, Ix < ~2) we obtain from (2.7) 

d = 6Js in (na~ /2ao) .  
(2.8) 
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Setting go = Po/(2~2) in (2.8) and letting 52 tend to zero, we obtain the result for 

the slit half-length in the case of a concentrated force d = Po/(~o~). 

As 62 ~ d, oo + o= follows from (2.8), and then g(x) § 0, f(x) ~ 0, and u2(x) § 0 follow 
from (2.3) and (2.4). One can apply this result to such a physical situation. If as t § 
one considers the limit of expansion of a definite portion of a barotropic gas from the point 
x = (0, 0) (an explosion) on a cut in an elastic half-plane, degeneracy of the parameters 
of the expanding slit and the pressure will evidently be as follows: 

d ( t )  

d( t ) -+oo,  (~ (x , t ) - -~ (~  f ( x , t ) - + O ,  .! / ( x , t )  dx-+const.  
-u(t) 

Now we shall turn our attention to the fact that the parameters d and 51 as the solu- 
tions of (2.5) and (2.7) do not depend on the velocity c (the fact that the stresses o12 and 
oaa on the cut do not depend on c is known [5]). Therefore the results referring to a cut 
which have been obtained are simply transferred to statics. Only the shape of the slit f(x) 
depends through the coefficient b on c (b(c) § ~ and c § c R are the manifestation of the 

resonance properties of the elastic body). 

For the transition to statics we find the limit 

l i r a  ~ '  - -  z ,  i t  - -  1 imiy  t t  = =  - -  iy ( 2 .9  ) 

inside the region and represent • in the form of a series 

! 

x~ (z~) = x~ (zO + (z~ - ~ )  x~ ( ~ )  + . - .  

Let us substitute the last expansion into (1.5) with account taken of X1(Zj) ~ O, 3" = 
i, 2, and proceed to the limit c § O, bearing (2.9) in mind. We shall obtain formulas for 

the stresses in the static version of the problem 

�9 i I 

o-,~ = Re  {z.~. (~) I , u x ,  ( : )} ,  g ,  = - R~, {,x~ (~)}, 

We note that YX2'(z) § 0 as y § 0, x = const as ]z I § ~, and the function X2(Z) is de- 
termined as previously by the equality in (2.2). 

In the range of velocities c under discussion the load does not produce work (which is 
rather evident for the symmetric case); there is no energy drain: there is no radiation to 
infinity (for this the order of the stresses as Ix] § ~ should be equal to O(Ix!-i/=)), and 

the fluxes w k are equal to zero. 

Remazk. One can arbitrarily formulate the problem in the velocity range 0 < c < c R with 
simpler but mor rigorous constraints, requiring, for example, continuity of the stresses at 

the ends of the slit, as in problems concerning punches without angular points [2, 5]. How- 
ever, the question arises of the uniqueness of the solution in a broader but all the same 
physically acceptable class of functions (the conditions (1.4) instead of the continuity con- 
ditions). A positive answer to this question is given here. It preserves its validity and 
is applicable to the problems of punches mentioned above if one puts in them in addition a 
condition that the surface of the elastic medium not intersect with the punch surface out- 

side the contact zone. 

For comparison we shall consider the problem of the motion of a crack under conditions 
(1.1)-(1.4). Now one should only give up the first condition (1.2) and allow tensile stres- 
ses for x > d, y = 0. Let us write out the final form of the solution (X1(Z) ~ 0): 

51 

A o (z) (~(t) dt 
A o(t) t - z  - [ l - ~ - i A  o(z)](~,  

(2.10) 
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Fig. 2 

62 

%2 (x) --= [_ g ( x ) ~  ~ ,  x ~ L~, g (x) ~ .~.  ] Ao (t -t ----i--~- + l  Ao (x)l a~,  
- 6 1  

where the  r a d i c a l  Ao(z) = (d + z ) ~ / 2 ( d  -- z ) - ~ / 2  w i t h  t h e  p r e v i o u s  u n i f o r m i t y  r u l e  i s  s e l e c t e d  
as the uniform canonical solution of the Hilbert problem (1.7) and (1.8) [2]. 

The behavior of the solution in a small neighborhood of the point x~ is analogous to 
the case of a slit, and the stress o2~ 0) for x > 0 takes the usual asymptotic form for 
crack theory 

62 

O.. ,~ ~A((d _ o  \--I,;'2. O. 1 ' r=  ~/2"~- (~ (t) dt 
. (/._-_ ~ ~ 

6] 

N~0 follows from the nonintersection condition (1.2). When N > 0, the parameter 6~ is 
either simply specified or one can attempt to determine it from the breakdown criterion for 
fixed c and o(x) (we shall not specify them here). In any case Eq. (2.6) determines the 
half-length of the crack d, which is smaller than the corresponding half-length of the slit. 
The load when N~0 produces power, which is liberated at the tip of the crack. 

Setting N = 0, we again arrive at Eq. (2.7) and the solution (2.2). Transformation of 
(2.10) into (2.2) under the condition N = 0 is completed similarly [2]. 

3. We shall construct the solution of the problem in the super-Rayleigh region of rates 
of movement of the load (c R < c < c2). Preliminary analysis of the possible situations based 
on taking account of the conditions (1.2)-(1.4) shows that one should now arrange the load 
in a significantly asymmetric way (Figs. 2a, b). Let us place the origin of coordinates at 
the end of the slit and denote the full length of the slit by the letter "Z," and we obtain 

L = { 0 < z < ~ } , L 0  .... { 6 , < ~ < , 3 ~ } ,  L, = { x ~ L , z r  l/. 

We s e l e c t  A(z) = [ ( l - - z ) / z ]  z/2 w i t h  t h e  p r e v i o u s  u n i f o r m i t y  r u l e  of  t h e  r a d i c a l  as  t h e  
c a n o n i c a l  u n i f o r m  s o l u t i o n  u sed  in  c o n s t r u c t i o n  of  t h e  H i l b e r t  p rob l em ( 1 . 7 )  [2 ] .  

A un ique  s o l u t i o n  of  t he  p r o b l e m  ( 1 . 7 )  which  does  n o t  c o n t r a d i c t  the  c o n d i t i o n s  (1 .2 )  
and (1.4) and limits similar to (1.8) is written in the form 

! 
i ~A(z) a( t )d t  Z~ (=) =: O, .,<~ (z) =: ~ j 3 - ~  ~ - 7  + [1 - -  iA  (z)l a. .  

[(~  - ~ (x) + ~g (z) (x ~_ L) ,  ,~ (x) ~ 0 

Z". (x -~- iO) = ig (x) (Y~o (x ~ Li) , 
l 

@'(3:) =:-~-- a~t)'(t~--x) ~(X), a(x)== x 
bl 

B ( x ) = ~ a ( x )  ( x ~ L + L 1 ) .  

(z ~ 0), 

(:,: ~ Lo), 
(3.1) 

as a result of the calculation of a single integral analogous to (2.1). 

The expressions u2(x) and f(x) in terms of g(x) will remain as before. Only the sign 
of b(c) is changed, since when passing through the Rayleigh velocity R(c) changes its own 
sign to negative. 
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First we shall consider a load with a discontinuity on the leading edge. Then one 
should superpose the coordinate of the edge with the coordinate of the tip of the slit x = 

1 from a consideration of the need to satisfy the conditions (I.i) and (1.2), and only a 
single undetermined parameter l remains in the problem. There is an equation similar to 
(2.5) for fixing the length of the opening: 

l 

f g (x) d,c 
o 

= 0  ( 3 . 2 )  

We shall calculate the integrals in-the solution of the problem (3.1) for a stepwise 
load o(x) = oo = const, x ~Lo. The integral in the expression for g(x) is calculated with 
the help of substitution. We shall give the final result, temporarily taking the size of 
the loading zone as the unit of length and the amplitude of the dynamic load as the unit of 
stress (o~ < i, 61 = 1 -- i): 

l 1 a(J:) i - a ( l - - i l  _~r 

I .! =- a r t : t g  l a  (x )  a (1 -- '1)1, x ~ l;j ,  

li: : :  '1 --- 2_ a l ' c l g  ( l  - 1) ~ 2 ._  ~ .  
.% 

(3.3) 

We have a bit to say in connection with the existence of a root of Eq. (3.2) for the 
function g(x) specified by formula (3.3). It is easy to establish that as 1 § 1 andZ § 
the function g(x) is consequently positively and negatively determined almost everywhere on 
L. Therefore in the interval 1 < 1 < ~ a unique root should evidently exist, which is 
confirmed by calculation. A plot of 1 = l(d~) on the basis of (3.2) and (3.3) is given in 
Fig. 3. We note one inequality which it is necessary for the root of (3.2) to satisfy in 
the case of (3.3): 

k(l, ~ )  < 0 ~ 1 > 1 -i c t g [ ( : d 2 ) ~ l  -+ ~ ,  a~ ~ O. 
(3.4) 

Analytically continuing g(x) from (3.3) with x ~ L~ into the region D, we shall estab- 
lish the final form of the solution for a load of rectangular shape: 

X,,.(z)=i]~A(z)-]-(~--I - l~arctg[  -!A-(z) ] (t l. 
La ( l__ t)~VI_.~.~ :== 0 ~,z ] 

Let us clarify the behavior of the main functions on the cut and verify the satisfac- 
tion of the conditions (1.2). We obtain the asymptotic consequences of (3.3) in advance: 

g(x)~-~io = k l l l x l  ~ :  + O(Ixlll~lD:..,~-o = M l f i  - -  (x/O + O(((z/O - -  t ) ~ : ) ,  

,I T :=::: - -  _ _  a..) . . . .  i + :~I IIr I -,~- o(((x/O .l)~v 2) (x-~ I + o), 

3 l  k ~ 2 I ' I ) 112>  = - , - . .C( - -  O. 

(3.5) 

Proceeding from (1.5), (1.6), (3.3), and (3.5), we have 

o~ -- g C~) < u (,~ ~ I:~), (3.6) 

.f (,~.) =: ~ ~/,~ ( ' )  d & - ~  o .  ~ - . .  --- - -  .~ i!.,..~,i [ t \  - -  7-) 

a t  y =  O. 

One can establish by taking (3.2) into account that the condition f(x) ~ 0 is satisfied 
on L. Thus all the previously made assumptions are justified. 

As follows from (3.5) and (3.6), the stress d22 (ando1:) is not bounded near and to the 
left of the point x = 0. One can compare the stress state here with the state near the tip 
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of the crack upon its sub-Rayleigh motion or in statics, and it is similar to the stress 
state in the neighborhood of the contact point upon the collision of elastic strips in the 
super-Rayleigh subsonic region [4]. The leading term of the asymptote as x + Z + 0 for the 
function o~ is a constant which is produced by the nonzero boundary conditions at the 
tip of the slit and which is the contribution of the nonuniform solution to the asymptotic 
expansion of this function in the neighborhood of the singular point. It is interesting 
to note that in this case this locally determined asymptote dominates over the contribution 
made by uniform and nonlocally determined solutions in the neighborhood of this same point 

O X (the second term in the expansion of o==( , as x § ~ + 0 in (3.5) and (3.6)). Concerning 
the kinematic characteristics of the slit as x § ~ -- 0, they are the same as in the sub- 
Rayleigh regime. 

A local analysis shows that if one shifts the load (with a discontinuity) to the left 
or to the right of the point x = ~, one of the conditions (i.i) and (1.2) is not satisfied. 
This proves the uniqueness of the choice of the scheme for positioning this load relative 
to the slit. 

Now let o(x) be a function which is doubly continuously differentiable nonnegative on 
Lo and which vanishes at the ends of Lo. Then it becomes necessary to determine two numer- 
ical parameters: ~ and ~z. We shall perform further analysis, assuming for the sake of 
definiteness that the load o(x) results from an external field (it is natural to assume 
that an explosive load was formed from within, for example, from a plane explosion, and the 
smooth load was formed from fields incident on the cut from outside; this affects the calcu- 
lation of o~ y) when checking the condition of no separation). It is more correct 
in this case to assume that o(x) extends to infinitely in both directions without allowing 
the existence of weak discontinuities propagating with wave velocities. But for the sake 
of simplicity we shall assume that the specified a(x) is a sufficiently good approximation 
of the actual loading. 

isolating the singularity of the integrand in the expression for g(x) from (3.2), we 
bring it to the form 

l 

I \ ~ l / I  
<51 

z (3.7) 

i7,1 ,.'i" (~7 ~ f i 7  .'7 (:) = ~ (z)~.~ , 2a (z) ~ (z) . l l  .... dI i a ,  (x) "~ ~ w w ~ ) a r c I g ~ i [ g ~ '  6 l 
~;. (.;'J ~'" .... ~ a r ~ t g  a --1 

We shall write down a formula for ~2(x, 0) with account taken of the fact that now 
the total stress field is the superposition of three components: a uniform static field, 
an external variable field (which would exist in the absence of the cut), and one perturbed 
by the presence of the slit: 

~0 ~2~ . . . .  o~.~ ~! ~ (x) + z:._, (z ,  O) ~ a (x ) -~ /  (x; /, 6~) (x~LO. 

The inequality 

M(x; l, 6~) ~ 0  

should be satisfied, and in particular, 

(3.8) 
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M(l; l, ~)  <~ 0, ( 3 . 9 )  

in order that the closing requirement be satisfied locally. 

At the same time if one calculates the asymptote of g(x) to the left of the point x = l, 
the requirement that the nonintersection condition of the edges 

df/dx -- b~(x) := b[M(l;" I, 6L)a(x ) - 60@~ (x ) ) ]  ~<. 0 (b < 0) 

b e  l o c a l l y  s a t i s f i e d  l e a d s  t o  t h e  i n e q u a l i t y  

~ ( t ;  !~ ~ )  ~> o. ( 3 . 1 0 )  

The solution of the system of inequalities (3.9) and (3.10) is the equality 

~ (l; l, ~ )  . ~  t ~ [ff (li--~q (t--~o]tl/2 2 a ([) __ O. (3 .  l l )  
3 (l--t) 3" dt-i s,(1) ~ a(61) �9 
61 

which closes the system of nonlinear Eqs. (3.2) and (3.11) for finding the parameters 1 and 
61, A qualitative investigation of this system under the condition max,(x) > ~ and uniqueness 

of the extremum of o(x) on Lo shows that it should have a solution and with a value of 1 
lying to the right of the point at which o(x) has a maximum (see Fig. 2b). 

One should note that (3.11) is a condition for the inversion of the leading term of the 
asymptote of the stress and velocity, field in a small neighborhood of the singular point 
x = l, y = O. Thus the solution has a weaker singularity at this point than in the versions 
of the problem discussed earlier. The behavior of the functions on the cut near x = I is of 
the form 

a~ 2 (x)  ~ c o n s t  (x  - -  !)~ e ( x - +  1-}- 0) ,  

df/cTz ~ - - b  cons t  ( / - -  x):~/', / r  ~ b c o ~ : t  (l - -  j:)5/~ ( x - .  / - -  0). 
(3.12) 

In the derivation of (3.12) for an estimate of the difference in the integrals which 
arises in evaluating the expression M(x; l, ~) -- M(/; l, 6~), the differentiability of the 
integrand over x for x ~l in (3.7) has been proven, and a Tayior's formula with a residual 
term in the Peano form [8] has been used, along with the smoothness condition of o(x) formu- 
lated above. 

The asymptotic behavior in the neighborhood of the other edge of the slit will be the 
same as in the case of a discontinuous load. A positive flow of energy to the point x = 0 
corresponds to it [6]: 

[ - - l  Wl o o , Kz = l i ra  s, ,~(x~0) 1 /2ha:  , /~-~/0 .  
o t t C : ~  x--~ - -0  

, 2 

It is equal to the power developed by the load (due to the asymmetry of its application 
this power is now different from zero). Such is the energy balance in the system for c R < c 
< C2. 

One can establish that ~z(x, 0) < 0 when x < 0. If the root (1, 61) of the system 
(3.2) and (3.11) is unique or, for safety's sake the smallest positive 1 among the roots of 
(3.2) and (3.11) is selected, the nonintersection condition is satisfied. The situation is 
worse with the checking of the closing condition to the right of the slit (3.8). One can 
check it asymptotically: 

M ( x )  . . . .  ~ § O ( t / x ) ,  x ~ ~ ,  

a n d  f o r  f u n c t i o n s  o ( x )  w h i c h  a r e  c o n v e x  u p w a r d s  ( a "  (x )  4 0 ,  x ~  Lo)  o n e  c a n  show t h a t  M~]x= i 
< 0. This inequality along with (3.12) shows that immediately beyond the tip of the 
slit on its continuation the stresses oe22(x, 0) are compressive. Concrete calculations 
easily accomplished with the help of a computer are necessary for global verification of 
this condition. One should naturally alter the separation scheme if this condition is not 
satisfied. 

423 



It is evident from the discussion that wave effects are noticeably expressed at near- 
Rayleigh rates of movement of the load (just as in other similar problems incidentally). 
The nature of the singularities of the solution at the tips of the slit changed upon the 
transition through the velocity of a Rayleigh wave; for smooth loads at one of them the 
singularity was replaced by a stronger one and at the other-- by a weaker one. 

The problem of the separation of an elastic medium pressed to a rigid plane base is 
solved simultaneously. 

The solution of the time-independent problem is justified if it is a limit of the 
corresponding time-dependent problem, and this will be so if the velocity of the loads does 
not coincide either with one of the velocities of intrinsic resonance waves of the elastic 
system (waves for which the phase velocity is equal to the group velocity) [9]. Such cases 
are excluded in advance in this discussion (c-~cR, ci, c2). 

The question of the separation of an elastic strip from the base under the action of a 
force moving at a constant sub-Rayleigh velocity has been discussed in [i0] (also see the 
bibliography for it). 

LITERATURE CITED 

i. E. H. loffe (Yoffe), "The moving Griffith crack," Philos. Mag., Ser. VII, 42, No. 330 
(1951). 

2. N. I. Muskhelishvili, Some Fundamental Problems of Mathematical Elasticity Theory [in 
Russian], Nauka, Moscow (1966). 

3. L. B. Freund and R. J. Clifton, "On the uniqueness of plane elastodynamic solutions for 
running cracks," J. Elasticity, ~, No. 4 (1974). 

4. I.V. Simonov, "Steady subsonic motion of a cut in an elastic strip," Izv. Akad. Nauk 
SSSR, Mekh. Tverd. Tela, No. 6 (1982). 

5. L. A. Galin, Contact Problems of Elasticity Theory [in Russian], Gostekhizdat, Moscow 
(1953). 

6. B. V. Kostrov, L. V. Nikitin, and L. M. Flitman, "The mechanics of brittle fracture," 
Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3 (1969). 

7. G. N. Pykhteev, Exact Methods for the Calculation of Cauchy-Type Integrals [in Russian], 
Nauka, Novosibirsk (1980). 

8. L. D. Kudryavtsev, Mathematical Analysis [in Russian], Vol. i, Vysshaya Shkola, Moscow 
(1970). 

9. L. I. Slepyan, Time-Dependent Elastic Waves [in Russian], Sudostroenie, Leningrad 
(1972). 

I0. G. G. Adams, "Steady solutions for a moving load on an elastic strip resting on an 
elastic half-plane," Int. J. Solids Struct., 15, No. II (1979). 

424 


